A guide to preventing uterine cancer in female NASA astronauts through physical activity during space travel

Main Article Content

Amir Hossein Ahmadi Hekmatikar
Diego Fernández Lázaro
Álvaro López Llorente
Abdolreza Kazemi Kazemi
https://orcid.org/0000-0003-1082-6335

Abstract

Today, thanks to scientific advances, space travel is on the rise. However, astronauts encounter numerous challenges during their space voyages, including the effects of space radiation and microgravity. Interestingly, female astronauts experience a greater number of side effects compared to their male counterparts. Certain research has indicated that female astronauts are prone to various types of cancers, particularly uterine cancer, as a consequence of prolonged space journeys and exposure to space radiation and microgravity. Conversely, physical activity has long been recommended as a cost-effective measure for managing or preventing cancer. Therefore, the present study aims to provide a concise overview of the impacts of space radiation and microgravity on female astronauts. Furthermore, it seeks to emphasize, for the first time, the significance of physical activity specifically for the prevention of uterine cancer among female astronauts. This study serves as a brief review of previous findings, potentially opening a new avenue for NASA researchers and exercise physiologists to explore. Finally, this study proposes a concise guide outlining three sections of physical activity for female astronauts: before, during, and after space travel. This guide aims to assist female astronauts in maintaining their physical well-being and reducing the risk of uterine cancer.

Article Details

How to Cite
Ahmadi Hekmatikar, A. H., Fernández Lázaro, D., López Llorente, Álvaro, & Kazemi, A. K. (2025). A guide to preventing uterine cancer in female NASA astronauts through physical activity during space travel. Physical Activity, Exercise and Cancer, 2(2), 52–62. https://doi.org/10.55860/MWMT2528
Section
Review Paper
Author Biographies

Amir Hossein Ahmadi Hekmatikar, Tarbiat Modares University

Department of Physical Education and Sport Sciences. Faculty of Humanities.

Diego Fernández Lázaro, University of Valladolid

Area of Histology, and Neurobiology Research Group. Faculty of Health Sciences. Campus of Soria.

Abdolreza Kazemi Kazemi, Vali-e-Asr University

Department of Sports Science. Faculty of Literature and Humanities.

Funding data

References

Adams, G. R., Zaldivar, F. P., Nance, D. M., Kodesh, E., Radom-Aizik, S., & Cooper, D. M. (2011). Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun., 25(4), 658-66. https://doi.org/10.1016/j.bbi.2011.01.002

Rose, B. I. (2022). Female astronauts: Impact of space radiation on menopause. Eur J Obstet Gynecol Reprod Biol., 271, 210-3. https://doi.org/10.1016/j.ejogrb.2022.02.022

Mackinnon, L. T. (1986). Changes in some cellular immune parameters following exercise training. Med Sci Sports Exerc., 18(5), 596-7. https://doi.org/10.1249/00005768-198610000-00018

Becker, J. L., Prewett, T. L., Spaulding, G. F., & Goodwin, T. J. (1993). Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating-wall vessel: Morphologic and embryologic considerations. J Cell Biochem., 51(3), 283-9. https://doi.org/10.1002/jcb.240510307

Bigley, A. B., Agha, N. H., Baker, F. L., Spielmann, G., Kunz, H. E., & Mylabathula, P. L. (2019). NK cell function is impaired during long-duration spaceflight. J Appl Physiol (1985)., 126(4), 842-53. https://doi.org/10.1152/japplphysiol.00761.2018

Bigley, A. B., Rezvani, K., Chew, C., Sekine, T., Pistillo, M., & Crucian, B. (2014). Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun., 39, 160-71. https://doi.org/10.1016/j.bbi.2013.10.030

Blakely, E. A., & Kronenberg, A. (1998). Heavy-ion radiobiology: New approaches to delineate mechanisms underlying enhanced biological effectiveness. Radiat Res., 150(5), 126-S45. https://doi.org/10.2307/3579815

Bromberg, J. L. (2000). NASA and the space industry: JHU Press. https://doi.org/10.56021/9780801860508

Cortés-Sánchez, J. L., Callant, J., Krüger, M., Sahana, J., Kraus, A., & Baselet, B. (2021). Cancer studies under space conditions: Finding answers abroad. Biomedicines., 10(1), 25. https://doi.org/10.3390/biomedicines10010025

Dai, Z., Guo, F., Wu, F., Xu, H., Yang, C., & Li, J. (2014). Integrin αvβ3 mediates the synergetic regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling. Bone., 69, 126-32. https://doi.org/10.1016/j.bone.2014.09.018

Deng, B., Liu, R., Tian, X., Han, Z., & Chen, J. (2019). Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling. In Vitro Cell Dev Biol Anim., 55, 260-71. https://doi.org/10.1007/s11626-019-00334-7

Dietz, C., Infanger, M., Romswinkel, A., Strube, F., & Kraus, A. (2019). Apoptosis induction and alteration of cell adherence in human lung cancer cells under simulated microgravity. Int J Mol Sci., 20(14), 3601. https://doi.org/10.3390/ijms20143601

Drago-Ferrante, R., Di Fiore, R., Karouia, F., Subbannayya, Y., Das, S., & Aydogan Mathyk, B. (2022). Extraterrestrial gynecology: Could spaceflight increase the risk of developing cancer in female astronauts? An updated review. Int J Mol Sci., 23(13), 7465. https://doi.org/10.3390/ijms23137465

Westerlind, K. C. (2003). Physical activity and cancer prevention -- Mechanisms. Med Sci Sports Exerc., 35(11), 1834-40. https://doi.org/10.1249/01.MSS.0000093619.37805.B7

Flynn, M., Fahlman, M., Braun, W., Lambert, C., Bouillon, L., Brolinson, P., Armstrong, C. (1999). Effects of resistance training on selected indexes of immune function in elderly women. J Appl Physiol (1985)., 86(6), 1905-13. https://doi.org/10.1152/jappl.1999.86.6.1905

Friedenreich, C. M., Neilson, H. K., & Lynch, B. M. (2010). State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer., 46(14), 2593-604. https://doi.org/10.1016/j.ejca.2010.07.028

Gupta, P., Bigley, A. B., Markofski, M., Laughlin, M., & LaVoy, E. C. (2018). Autologous serum collected 1 h post-exercise enhances natural killer cell cytotoxicity. Brain Behav Immun., 71, 81-92. https://doi.org/10.1016/j.bbi.2018.04.007

Hoffman-Goetz, L., Thorne, R. J., & Houston, M. E. (1988). Splenic immune responses following treadmill exercise in mice. Can J Physiol Pharmacol., 66(11), 1415-9. https://doi.org/10.1139/y88-230

Hoffman-Goetz, L., Keir, R., Thorne, R., Houston, M. E., & Young, C. (1986). Chronic exercise stress in mice depresses splenic T lymphocyte mitogenesis in vitro. Clin Exp Immunol., 66(3), 551-7.

Jain, V., & Wotring, V. E. (2016). Medically induced amenorrhea in female astronauts. NPJ Microgravity., 2, 16008. https://doi.org/10.1038/npjmgrav.2016.8

Keast, D., & Morton, A. R. (2020). Long-term exercise and immune functions. Exer Dis: CRC Press., 89-120. https://doi.org/10.1201/9781003068853-7

Kennedy, E., Powell, D., Li, Z., Bell, J., Barwick, B., & Feng, H. (2018). Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer. Sci Rep., 8(1), 6709. https://doi.org/10.1038/s41598-018-24755-8

Kopp, S., Slumstrup, L., Corydon, T. J., Sahana, J., Aleshcheva, G., & Islam, T. (2016). Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci Rep., 6(1), 26887. https://doi.org/10.1038/srep26887

Lavín-Pérez, A. M., Collado-Mateo, D., Abbasi, S., Ferreira-Júnior, J. B., & Hekmatikar, A. H. A. (2023). Effects of exercise on immune cells with tumor-specific activity in breast cancer patients and survivors: A systematic review and meta-analysis. Support Care Cancer., 31(9), 507. https://doi.org/10.1007/s00520-023-07968-0

Mackinnon, L. T., Chick, T. W., van As, A., & Tomasi, T. B. (1987). The effect of exercise on secretory and natural immunity. Adv Exp Med Biol., 216a, 869-76. https://doi.org/10.1007/978-1-4684-5344-7_102

Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune function and micronutrient requirements change over the life course. Nutrients., 10(10), 1531. https://doi.org/10.3390/nu10101531

Maglennon, G. A., & Doorbar, J. (2012). The biology of papillomavirus latency. Open Virol J., 6, 190-7. https://doi.org/10.2174/1874357901206010190

Martinez, E.M., Yoshida, M. C., Candelario, T. L., & Hughes-Fulford, M. (2015). Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Physiol Regul Integr Comp Physiol., 308(6), 480-8. https://doi.org/10.1152/ajpregu.00449.2014

McTiernan, A., Friedenreich, C. M., Katzmarzyk, P. T., Powell, K. E., Macko, R., & Buchner, D. (2019). Physical activity in cancer prevention and survival: A systematic review. Med Sci Sports Exerc., 51(6), 1252. https://doi.org/10.1249/MSS.0000000000001937

Nieman, D. C. (1994). Exercise, infection, and immunity. Int J Sports Med., 15(3), 131-S41. https://doi.org/10.1055/s-2007-1021128

Mishra, B., Lawson, G. W., Ripperdan, R., Ortiz, L., Luderer, U. (2018). Charged-Iron-Particles found in galactic cosmic rays are potent inducers of epithelial ovarian tumors. Radiat Res.,190(2), 142-50. https://doi.org/10.1667/RR15028.1

Moreno-Villanueva, M., & Wu, H. (2019). Radiation and microgravity - Associated stress factors and carcinogensis. Reach., 13, 100027. https://doi.org/10.1016/j.reach.2019.100027

Moreno-Villanueva, M., Wong, M., Lu, T., Zhang, Y., & Wu, H. (2017). Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity., 3(1), 14. https://doi.org/10.1038/s41526-017-0019-7

Najrana, T., & Sanchez-Esteban, J. (2016). Mechanotransduction as an adaptation to gravity. Front Pediatr., 4, 140. https://doi.org/10.3389/fped.2016.00140

Nassef, M. Z., Kopp, S., Melnik, D., Corydon, T. J., Sahana, J., & Krüger, M. (2019a). Short-term microgravity influences cell adhesion in human breast cancer cells. Int J Mol Sci., 20(22), 5730. https://doi.org/10.3390/ijms20225730

Nassef, M. Z., Kopp, S., Wehland, M., Melnik, D., Sahana, J., & Krüger, M. (2019b). Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int J Mol Sci., 20(13), 3156. https://doi.org/10.3390/ijms20133156

Nieman, D. C., Gillitt, N. D., Sha, W., Esposito, D., & Ramamoorthy, S. (2018). Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS One., 13(3), 0194843. https://doi.org/10.1371/journal.pone.0194843

Nitta, Y., Hoshi, M. (2003). Relationship between oocyte apoptosis and ovarian tumours induced by high and low LET radiations in mice. Int J Radiat Biol., 79(4), 241-50. https://doi.org/10.1080/0955300031000096315

Ohnishi, T., Ohnishi, K., Takahashi, A., Taniguchi, Y., Sato, M., Nakano, T., & Nagaoka, S. (2002). Detection of DNA damage induced by space radiation in Mir and space shuttle. J Radiat Res., 43, 133-6. https://doi.org/10.1667/RR15028.1

Peake, J. M., Della Gatta, P., Suzuki, K., & Nieman, D. C. (2015). Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc Immunol Rev., 21, 8-25. Retrieved from [Accessed 2025, 30 September]: https://eprints.qut.edu.au/81914/

Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017b). Muscle damage and inflammation during recovery from exercise. J Appl Physiol (1985)., 122(3), 559-70. https://doi.org/10.1152/japplphysiol.00971.2016

Peake, J. M., Neubauer, O., Walsh, N. P., & Simpson, R. J. (2017a). Recovery of the immune system after exercise. J Appl Physiol (1985)., 122(5), 1077-87. https://doi.org/10.1152/japplphysiol.00622.2016

Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: Regulation, integration, and adaptation. Physiol Rev., 80(3), 1055-81. https://doi.org/10.1152/physrev.2000.80.3.1055

Kaushik, H. (2024). Effect of exercise on different factors affecting the immune system. Comp Ex Physiol., 1, 1-13. https://doi.org/10.1163/17552559-20230033

Prasad, K. N. (2020). Handbook of radiobiology: CRC press. https://doi.org/10.4324/9781003067825

Przystupski, D., Górska, A., Szewczyk, A., Drąg-Zalesińska, M., & Kulbacka, J. (2021). 3D clinorotation affects drug sensitivity of human ovarian cancer cells. Microgravity Sci Tech., 33(3), 42. https://doi.org/10.1007/s12217-021-09881-9

Ronca, A. E., Baker, E. S., Bavendam, T. G., Beck, K. D., Miller, V. M., Tash, J. S., & Jenkins, M. (2014). Effects of sex and gender on adaptations to space: reproductive health. Journal of women's health., 23(11), 967-74. https://doi.org/10.1089/jwh.2014.4915

Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L., & Mehta, S. K. (2019). Herpes virus reactivation in astronauts during spaceflight and its application on Earth. Front Microbiol., 10, 16. https://doi.org/10.3389/fmicb.2019.00016

Salimans, L., Liberman, K., Njemini, R., Krohn, I. K., Gutermuth, J., & Bautmans, I. (2022). The effect of resistance exercise on the immune cell function in humans: A systematic review. Exp Gerontol., 164, 111822. https://doi.org/10.1016/j.exger.2022.111822

Scheffer, D. D. L., & Latini, A. (2020). Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis., 1866(10), 165823. https://doi.org/10.1016/j.bbadis.2020.165823

Shephard, R. J., Verde, T. J., Thomas, S. G., & Shek, P. (1991). Physical activity and the immune system. Can J Sport Sci., 16(3), 169-85.

Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J Clin., 68(1), 7-30. https://doi.org/10.3322/caac.21442

Simpson, R. J., Campbell, J. P., Gleeson, M., Krüger, K., Nieman, & D. C., Pyne, D. B. (2020). Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev., 26, 8-22.

Simpson, R. J., Bigley, A. B., Agha, N., Hanley, P. J., & Bollard, C. M. (2017). Mobilizing immune cells with exercise for cancer immunotherapy. Exerc Sport Sci Rev., 45(3), 163-72. https://doi.org/10.1249/JES.0000000000000114

Simpson, R. J., Kunz, H., Agha, N., & Graff, R. (2015). Exercise and the regulation of immune functions. Prog Mol Biol Transl Sci., 135, 355-80. https://doi.org/10.1016/bs.pmbts.2015.08.001

Simpson, R. J., Lowder, T. W., Spielmann, G., Bigley, A. B., LaVoy, E. C., & Kunz, H. (2012). Exercise and the aging immune system. Ageing Res Rev., 11(3), 404-20. https://doi.org/10.1016/bs.pmbts.2015.08.001

So, W. K., & Chui, Y. (2007). Women's experience of internal radiation treatment for uterine cervical cancer. J Adv Nurs., 60(2), 154-61. https://doi.org/10.1111/j.1365-2648.2007.04387.x

Tvede, N., Pedersen, B. K., Hansen, F. R., Bendix, T., Christensen, L. D., Galbo, H., & Halkjaer-Kristensen, J. (1989). Effect of physical exercise on blood mononuclear cell subpopulations and in vitro proliferative responses. Scand J Immunol., 29(3), 383-9. https://doi.org/10.1111/j.1365-3083.1989.tb01137.x

Wang, J., Liu, S., Li, G., & Xiao, J. (2020). Exercise regulates the immune system. Adv Exp Med Biol., 1228, 395-408. https://doi.org/10.1007/978-981-15-1792-1_27

Watanabe, H., Ogiu, T., Nishimura, M., Masaoka, Y., Kurosumi, M., & Takahashi, T. (1998a). Comparison of tumorigenesis between accelerated heavy ion and X-ray in B6C3F1 mice. J Radiat Res., 39(2), 93-100. https://doi.org/10.1269/jrr.39.93

Watanabe, H., Ogiu, T., Nishizaki, M., Fujimoto, N., Kido, S., & Ishimura, Y. (1998b). Induction of ovarian tumors by heavy ion irradiation in B6C3F1 mice. Oncol Rep., 5(6), 1377-80. https://doi.org/10.3892/or.5.6.1377

Most read articles by the same author(s)